озон

Озон

 

Озо́н (от др.-греч. ὄζω — пахну) — состоящая из трёхатомных молекул O3 аллотропная модификация кислорода. При нормальных условиях — голубой газ. При сжижении превращается в жидкость цвета индиго. В твёрдом виде представляет собой тёмно-синие, практически чёрные кристаллы.

  История открытия

Впервые озон обнаружил в 1785 голландский физик М. ван Марум по характерному запаху (свежести) и окислительным свойствам, которые приобретает воздух после пропускания через него электрических искр. Однако как новое вещество он описан не был, ван Марум считал, что образуется особая «электрическая материя».

Термин озон предложен немецким химиком X.Ф. Шёнбейном в 1840, вошёл в словари в конце 19-ого века. Многие источники именно ему отдают приоритет открытия озона в 1839.

Физические свойства

  Химические свойства

Образование озона проходит по обратимой реакции:

3O2 + 68 ккал (285 кДж) ←→ 2O3.

Молекула О3 неустойчива и при достаточных концентрациях в воздухе при нормальных условиях самопроизвольно за несколько десятков минут [4] превращается в O2 с выделением тепла. Повышение температуры и понижение давления увеличивают скорость перехода в двухатомное состояние. При больших концентрациях переход может носить взрывной характер. Контакт озона даже с малыми количествами органических веществ, некоторых металлов или их окислов резко ускоряет превращение.

В присутствии небольших количеств HNO3 озон стабилизируется, а в герметичных сосудах из стекла, некоторых пластмасс или чистых металлов озон при низких температурах (—78 ºС) практически не разлагается.

Озон — мощный окислитель, намного более реакционноспособный, чем двухатомный кислород. Окисляет почти все металлы (за исключением золота, платины и иридия) до их высших степеней окисления. Окисляет многие неметаллы.

2 Cu2+(aq) + 2 H3O+(aq) + O3(g) → 2 Cu3+(aq) + 3 H2O(l) + O2(g)

Озон повышает степень окисления оксидов:

NO + O3NO2 + O2

Эта реакция сопровождается хемилюминесценцией. Двуокись азота может быть окислена до трёхокиси азота:

NO2 + O3 → NO3 + O2

с образованием азотного ангидрида N2O5:

NO2 + NO3 → N2O5

Озон реагирует с углеродом при нормальной температуре с образованием двуокиси углерода:

C + 2 O3 → CO2 + 2 O2

Озон не реагирует с аммониевыми солями, но реагирует с аммиаком с образованием нитрата аммония:

2 NH3 + 4 O3 → NH4NO3 + 4 O2 + H2O

Озон реагирует с сульфидами с образованием сульфатов:

PbS + 4 O3PbSO4 + 4 O2

С помощью озона можно получить Серную кислоту как из элементарной серы, так и из двуокиси серы:

S + H2O + O3 → H2SO4

3 SO2 + 3 H2O + O3 → 3 H2SO4

Все три атома кислорода в озоне могут реагировать по отдельности в реакции хлорида олова с соляной кислотой и озоном:

3 SnCl2 + 6 HCl + O3 → 3 SnCl4 + 3 H2O

В газовой фазе озон взаимодействует с сероводородом с образованием двуокиси серы:

H2S + O3 → SO2 + H2O

В водном растворе проходят две конкурирующие реакции с сероводородом, одна с образованием элементарной серы, другая с образованием серной кислоты:

H2S + O3 → S + O2 + H2O

3 H2S + 4 O3 → 3 H2SO4

Обработкой озоном раствора йода в холодной безводной хлорной кислоте может быть получен перхлорат йода:

I2 + 6 HClO4 + O3 → 2 I(ClO4)3 + 3 H2O

Твёрдый нитрилперхлорат может быть получен реакцией газообразных NO2, ClO2 и O3:

2 NO2 + 2 ClO2 + 2 O3 → 2 NO2ClO4 + O2

Озон может участвовать в реакциях горения, при этом температуры горения выше, чем с двухатомным кислородом:

3 C4N2 + 4 O3 → 12 CO + 3 N2

Озон может реагировать при низких температурах. При 77 K (-196 °C), атомарный водород взаимодействует с озоном с образованием супероксидного радикала с димеризацией последнего[5] :

H + O3 → HO2 + O

2 HO2 → H2O4

Озон может образовывать озониды, содержащие анион O3-. Эти соединения взрывоопасны и могут храниться при низких температурах. Известны озониды всех щелочных металлов. KO3, RbO3, and CsO3 могут быть получены из соответствующих супероксидов:

KO2 + O3 → KO3 + O2

Озонид калия может быть получен и другим путём из гидроокиси калия [6]:

2 KOH + 5 O3 → 2 KO3 + 5 O2 + H2O

NaO3 and LiO3 могут быть получены действием CsO3 в жидком аммиаке NH3 на ионообменные смолы, содержащие ионы Na+ or Li+ [7]:

CsO3 + Na+ → Cs+ + NaO3

Обработка озоном раствора кальция в аммиаке приводит к образованию озонида аммония, а не кальция [8]:

3 Ca + 10 NH3 + 6 O3 → Ca•6NH3 + Ca(OH)2 + Ca(NO3)2 + 2 NH4O3 + 2 O2 + H2

Озон может быть использован для удаления марганца из воды с образованием осадка, который может быть удалён фильтрованием:

2 Mn2+ + 2 O3 + 4 H2O → 2 MnO(OH)2 (s) + 2 O2 + 4 H+

Озон превращает цианиды во много раз менее токсичные цианаты:

CN- + O3 → CNO- + O2

Озон может полностью разлагать мочевину [9] :

(NH2)2CO + O3 → N2 + CO2 + 2 H2O

Взаимодействие озона с органическими соединениями с активированным или третичным атомом углерода при низких температурах приводит к соответствующим гидротриоксидам.

  Биологические свойства

Высокая окисляющая способность.

 

Нормативы по озону:

  • максимальная разовая предельно допустимая концентрация (ПДК м.р.) в атмосферном воздухе населённых мест 0,16 мг/м³
  • среднесуточная предельно допустимая концентрация (ПДК с.с.) в атмосферном воздухе населённых мест 0,03 мг/м³
  • предельно допустимая концентрация (ПДК) в воздухе рабочей зоны 0,1 мг/м³

Озон эффективно убивает плесень и бактерии.

  Применение озона

Применение озона обусловлено его свойствами:

  • сильного окисляющего агента:
    • для стерилизации изделий медицинского назначения
    • при получении многих веществ в лабораторной и промышленной практике
    • для отбеливания бумаги
    • для очистки масел
  • сильного дезинфицирующего средства:
    • для очистки воды и воздуха от микроорганизмов (озонирование)
    • для дезинфекции помещений и одежды

Одним из существенных достоинств озонирования, по сравнению с хлорированием, является отсутствие токсинов после обработки. Тогда как при хлорировании возможно образование существенного количества токсинов и ядов, например, диоксина.

Озон

 

Одним из наиболее сильных окислителей, уничтожающих бактерии, споры и вирусы, является озон. Механизм обеззараживания воды и воздуха озоном основан на его способности инактивировать сложные органические вещества белковой природы, содержащиеся в животных и растительных организмах. При озонировании, одновременно с обеззараживанием происходит обесцвечивание воды, а также ее дезодорация и улучшение вкусовых качеств.

 

Окислительный потенциал озона

Мерой эффективности окислителя служит его электрохимический (окислительный) потенциал, выраженный в вольтах. Ниже приведены значения электрохимического потенциала различных окислителей в сравнении с озоном:

Окислитель

Потенциал, В

В % от потенциала озона

Использование окислителя в водоподготовке

Фтор (F2)

2,87

139

-

Озон (O3)

2,07

100

+

Перекись водорода (H2O2)

1,78

86

+

Перманганат калия (KMnO4)

1,7

82

+

Гипобромовая кислота (HOBr)

1,59

77

+

Гипохлоровая кислота (HOCl)

1,49

72

+

Хлор (Cl2)

1,36

66

+

Диоксид хлора (ClO2)

1,27

61

+

Кислород (O2)

1,23

59

+

Хромовая кислота (H2CrO2)

1,21

58

-

Бром (Br2)

1,09

53

+

Азотная кислота (HNO3)

0,94

45

-

Йод (I2)

0,54

26

-

 

Из таблицы видно, что озон - самый сильный из всех окислителей

 В ходе исследований, проведенных специалистами американской Корпорации "ALPINE AIR PRODUCTS" по проблеме "Воздействие озона на химические вещества, выделяемые одеждой после ее сухой чистки", были получены следующие результаты:

2010